General Combinatorial Differential Operators
نویسندگان
چکیده
Let D = d/dX . We develop a theory of combinatorial differential operators of the form Ω(X, D) where Ω(X, T ) is a species of structures built on two sorts, X and T , of underlying elements. These operators act on species, F (X), instead of functions. We show how to compose these operators, how to compute their adjoints and their counterparts in the context of underlying symmetric functions and power series. We also analyze how these operators behave when applied to products of species (generalized Leibniz rule) and other combinatorial operations. Special instances of these operators include: combinatorial finite difference operators, Φ(X,∆), corresponding the species Ω(X, T ) = Φ(X, E+(T )), where E+ is the species of nonempty finite sets; pointing operators Λ(XD), which are self-adjoint and correspond to the species Ω(X, T ) = Λ(XT ); and combinatorial Hammond differential operators, Θ(D), corresponding to the species Ω(X, T ) = Θ(T ). We also give a table of all atomic differential operators XD/K where K is a subgroup of Sm × Sk and m + k ≤ 7. Résumé. Soit D = d/dX . Nous développons une théorie d’opérateurs différentiels combinatoires de la forme Ω(X, D) où Ω(X, T ) est une espèce de structures construite sur deux sortes, X et T , d’éléments sous-jacents. Ces opérateurs agissent sur des espèces, F (X), plutôt que sur des fonctions. Nous montrons comment composer ces opérateurs, comment calculer leurs adjoints et les opérateurs qui leur correspondent dans le contexte des fonctions symétriques et des séries génératrices. Nous analysons aussi le comportement de ces opérateurs lorsqu’ils sont appliqués au produit d’espèces (règle de Leibniz) ainsi qu’à d’autres opérateurs combinatoires. Ces opérateurs incluent les opérateurs combinatoires de différences finies, Φ(X,∆), correspondant aux espèces Ω(X, T ) = Φ(X, E+(T )), où E+ est l’espèce des ensembles finis non-vides, les opérateurs de pointage, Λ(XD), qui sont auto-adjoints et les opérateurs différentiels combinatoires de Hammond, Θ(D), qui correspondent aux espèces Ω(X, T ) = Θ(T ). Nous donnons également une table de tous les opérateurs différentiels atomiques XD/K où K est un sous-groupe de Sm × Sk et m + k ≤ 7. With the support of NSERC (Canada). 2 GILBERT LABELLE AND CÉDRIC LAMATHE
منابع مشابه
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملBinary Encoding Differential Evolution for Combinatorial Optimization Problems
Differential Evolution algorithm is a new competitive heuristic optimization algorithm in the continuous field. The operators in the original Differential Evolution are simple; however, these operators make it impossible to use the Differential Evolution in the binary space directly. Based on the analysis of problems led by the mutation operator of the original Differential Evolution in the bin...
متن کاملA theory of general combinatorial differential operators
Let D = d/dX. We develop a theory of combinatorial differential operators of the form Ω(X, D) where Ω(X, T ) is an arbitrary species of structures built on two sorts, X and T , of underlying elements. These operators act on species, F (X), instead of functions. We show how to compose these operators, how to compute their adjoints and their counterparts in the context of underlying symmetric fun...
متن کاملWeighted composition operators on measurable differential form spaces
In this paper, we consider weighted composition operators betweenmeasurable differential forms and then some classic properties of these operators are characterized.
متن کاملBackward Error Analysis and the Substitution Law for Lie Group Integrators
Butcher series are combinatorial devices used in the study of numerical methods for differential equations evolving on vector spaces. More precisely, they are formal series developments of differential operators indexed over rooted trees, and can be used to represent a large class of numerical methods. The theory of backward error analysis for differential equations has a particularly nice desc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009